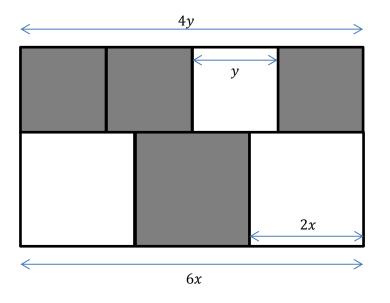

Further Mathematics Support Programme

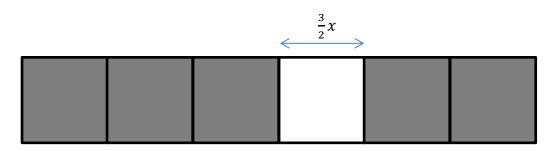
Shaded squares 1

There are three sizes of square in the design.

Let the length of one side of the smallest type of square be x


The length of one side of the largest type of square is therefore 2x

2x


х

Let the length of one side of the middle type of square be y

So $4y = 6x \Rightarrow y = \frac{3}{2}x$

The length of one side of the middle type of square is $\frac{3}{2}x$

The length of one side of the overall design is therefore = $6 \times \frac{3}{2}x = 9x$

Further Mathematics Support Programme

Area of overall design = $9x \times 9x = 81x^2$ Area of a small square = x^2 Area of a middle square = $\frac{3}{2}x \times \frac{3}{2}x = \frac{9}{4}x^2$ Area of a large square = $2x \times 2x = 4x^2$ Shaded area: Two small squares = $2x^2$ Four large squares = $4 \times 4x^2 = 16x^2$ Fifteen middle squares = $15 \times \frac{9}{4}x^2 = \frac{135}{4}x^2$ Total shaded area = $2x^2 + 16x^2 + \frac{135}{4}x^2 = 51.75x^2$ Percentage of design shaded = $\frac{51.75x^2}{81x^2} \times 100 = 63.9\%$ (3 s.f.)

Funded by Department for Education